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LIST OF SYMBOLS 

X true value of k x 1 vector of regression parameters 
,. 
Xn original least squares estimate of X depending upon n observ- 

ations 

L 

X k x 1 vector of devistions in the regression parameters from 
reference; X = X - X - 

y n x 1 vector of observations or measurements 

$ computed value of y vector 

& y vector of deviations in the observations; 7 = - $ 

Y (n + p) x 1 vector of deviations in the weighted observations; 
Y = f l y  

e (n + p) x 1 noise vector associated with the observations 

Q covariance matrix of the observational e r ror  e. 

ci probable e r ror  in the ith observation 

1 1  w diag (7.7, . . . , 2) "weighting" matrix 
Dl c2 0: 

Cn covariance matrix of depending upon n observations 

I identity matrix 

E I expectedvalue of [ I 

( 1' transpose of matrix ( ) 

( )" inverse of matrix ( ) 
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THE EFFECT OF ADDITIONAL OBSERVATIONS 
ON A PREVIOUS LEAST SQUARES ESTIMATE 

INTRODUCTION 

In a number of applications of the method of least squares it may 
be desirable to compute the influence of additional observations on a 
previously determined least squares estimate of the regression para- 
meters a id  their associzted zovarixize iiiztr-&. 
tion is presented in which the parameters a re  assumed to be constants, 
although the method can be extended to dynamic systems as shown by 
Gainer in reference [ 11 . Matrix equations which provide for additional 
observations a re  derived for the method of weighted least squares with 
uncorrelated errors.  
presented by Gainer in reference [l]  
observation is added. 

A partic-dar applicz- 

These recursion formulas reduce to the ones 
in the case where only a single 

DERIVATION OF METHOD 

The nonlinear estimation problem is usually solved by assuming a 
linear approximation of the true regression parameters in a neighbor- 
hood of a nominal or reference set of parameters. Let us assume that 
we have obtained a least squares estimate and also the covariance matrix 
of the regression parameters. @?e are concerned here with the problem 
of determining a revised least squares estimate and its associated co- 
variance matrix when additional observations become ava i lab lg  

Consider the following system of n t p observation equations re -  
lating deviations in "weighted'? observations to deviations in the k 
(n > k) unknowns 

6 -  

. .  

Now let us apply the method of partitioning to the matrix equation 

A X  = Y + e ,  (2) 
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and define 

f f i l h  

I i  \ 

where 

An is a n x k matrix of coefficients a . .  ( i  = 1 ,  . . . , n ;  j 1 1, 
11 ' - e ,  k), 

B is a p x k matrix of coefficients a . .  , ( i  z n + 1, . . . , n + p;  
P 'J 

j 1 ,  . . . ,  k), 

En is a n x k matrix of coefficients fii a , .  (i = 1, . . . , n ;  
'1 ' 

j = 1, . . . ,  k), 

F is a p x k matrix of coefficients fii ai j  , (i = n + 1, . . . , 
n + p; j = 1, . . . ,  k), P 

un is a n x 1 vector of weighted observations, 

v is a p x 1 vector of additional weighted observations, 
P 

6, is a n x 1 vector of e r ro r s  in weighted observations, 

6, is a p x 1 vector of e r ro r s  in additional weighted observations, 

Wn is a n x 1 diagonal "weighting" matrix. 
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Let us assume that the errors  in the observations a re  random vari- 
ables having a Gaussian distribution with zero mean and E [ee'] 
where Q is a diagonal covariance matrix with elements ai2 . 
shown that the least squares estimate of x which depends upon n ob- 

= Q, 
It can be 

f servations is given by 

* 

(4) - xn = (E:E,)-~ E;, un = (A: W, An)-1  A: W, u, 

where the diagonal "weighting ' ' matrix is given by 

'n 

Now Cn = .ET'., - x) (2, - %)T] = ( A 2  W, An) - l  = (E,T E,) -1 
.. 

is the covariance matrix of X,, 
information. Let X i ,  i = 1, 2, . . ., k, be the parameters to be 

estimated. Then an unbiased estimate of the variance of xi is given by 

and it is important for its statistical 

where 

b,, is the ith diagonal element of Cn, 

N is the number of observation equations, 

k is the number of parameters to be estimated. 
I -  

It would be of interest to obtain a revised estimate of x and C, 
by considering P additional observations. The estimate of which 
depends upon n + p observationsis 
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we writ e 
) k *  k 

Since C;I = (E: 

(En T En + F: F p ) - l  (C;' t F: Fp)- '  = ( I  - H ) - '  cn (8 )  

where H = - cn Fd FP . 

Substitution of (8) into ( 7 )  gives 

h - 
Xn + p = ( I  - H)' l  Cn (E: un t Fd v p )  (9)  

( I  - H ) - l  (Cn E T  un + C,, FpT vp)  

Evaluation of ( I  - H ) - '  

For the inversion of the matrix ( I  - H )  we find application of the 
following formula in  reference 121 
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where A and s are  nonsingular matrices, U and V are  rectangular. 
1 

Putting 

A = I , . , ,  S = Ip P '  U = Cn Fp', V T  = FP 
k x p  k x k  k x p  P X  k 

the form of (11) becomes 

Substitution of (1 2) into (1 0) gives 

,. - 
*n + p = [I - Cn F: (I f FP Cn F Z ) - l  FP] in + Cn F d  vp (13) 

We may select either of the equations (1 0)  o r  ( 1  3) for the evaluation 

It is to  be observed that in equation (10) one always inverts 
- 

of xn + . 
a matrix of order k, where k is the number of unknowns; whereas in 
equation (13) it is necessary to invert a matrix of order p,  where p is 
the number of additional observations. 
arises where k is much greater than p, it would probably be desirable 
t o  use equation (1 3). 

Consequently, i f  the situation 

Special Case When p = 1 

If we select p = 1 we find that (13) reduces to . -  
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where (F1 Cn FIT)  is now a scalar quantity for the case of a single addi- 

tional observation. We see that (1 4) is  equivalent to equation (36) in 

reference [11 . We can also observe that the estimate xn does 

not require any matrix inversion. 
equation (14) may be used as a least square sequential estimation 
procedure to  obtain a revised estimate fo r  the parameter vector. 

Hence it is clear that the recursive 

Evaluation of Cn + 

The revised covariance matrix Cn + 
is given by 

= (E; t F ; F ~ ) - ’  = (I - H ) - I  cn 
n + p  

C 

= [ I  - Cn F C  ( I  + FP Cn Fp’).’ FP] Cn . 

Special Case When p = 1 

Let p = 1 .  Then we find that (15) reduces to 

Let J ’ =  Cn F: . Then ( 1  6)  becomes 
k x  k k x  1 k x  1 

It is to be observed that (16) is equivalent to equation (34) in refer-  
ence [l] and that it does not require matrix inversion. 
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GEOMETRICAL INTERPRETATION O F  THE LEAST 
SQUARES PROBLEM 

The presentation which follows utilizes certain basic concepts set 
forth by Householder in references [21 
interpretation of the method of weighted least squares. 

and [31 in providing a geometric 

Consider the linear least squares problem where one has given a 
* x k m-~trk A with n > k IOWE and a n-vector 37. One desires a 
k-vector X such that 

A X  = y +  e ,  P T e  = 0 

where 

e is the vector of residuals, 

1 1 2) A .  
2 

P = W A  = diag 
o;, 

Let us now consider the "weighting" matrix W as a metric for the 
space and hence define the orthogonality and lengths of the vectors with 
respect to this metric. 
the method of least squares, i. e., the projection of an arbitrary given 
vector upon a certain subspace. 
matrix A be linearly independent. Then the vector A X  is a vector in 
the sa&e space spanned by the columns of A and A X  is said to be the 
orthogonal projection with respect to W of the vector y whenever y - A X  
is orthogonal to A with respect t o  the positive definite and symmetric 
matrix W, i. e., 

One can give a geometrical interpretation to 

Let the columns of the rectangular 

A T W  (y - A X )  = 0 

o r  x = ( A T W A ) - ~  A T W  y,  

f '  which is exactly the least squares solution of the usual normal equations. 
The assumption that the columns of A a r e  linearly independent together 
with the fact that W is a positive definite symmetric matrix leads to the 
following definition of a generalized projector reference [3] . - -  

Definition: A matrix T, is the generalized projector with respect to W 

for the space of A if T,; = A ( A T W A ) - ~  A T W .  
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The generalized projector has the following properties: 

(a )  T A ; W  is  a unique projector since i f  A i s  replaced by A K ,  

where K is any nonsingular matrix, one obtains the same 
projector, This can be verified directly, i. e., 

= A K  [ ( A K )  w (W] -' ( A K ) T  w 
TAK ; W 

= A K  [ K T  ( A T W A )  K].' K T A T W  

= A ( K K - 1 )  ( A T W A ) "  ( K T ) - '  K T A T W  

'A, ; w = A ( A T W A ) - ~  A T W  = T ~ ; ~  

- (b) W T A ; ,  is  symmetric, i. e . ,  ( W T A ; W ) ~  - W T A ; W  

Now ( W T A ; w ) T  = [WA ( A T W A ) - '  ATWIT 1 WA ( A T W A ) - '  ATW 

- 
- W T A ; W  

- (c) T A ; W  is idempotent, i. e., T i ;  - T A ;  w -  

T A ;  2 W = A ( A T W A ) . '  A T W A  ( A T W A ) - '  A T W  = A ( A T W A ) - ~  AT'W 

(d) T A ;  w~ is the orthogonal projection of the vector y .  This is  

shown by taking the generalized scalar product of T A ;  y 

the residual vector ( y  - T A ; W  y )  

and 

, i. e. , 

( T A ; W y ) T  

= Y T W T A ; W  ( I  - T A ; W ) Y  = Y T W  ( T A ; W  - ' A ; W )  Y = 

( I  - T ~ ; W )  Y = YT ( W T A ; W ) T  (I - T A ; W )  Y 
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since by (b) WTAiw is symmetric and by (c)  TAiW is 

idempotent. 

REFERENCES 

1. Patrick A. Gainer, "A Method for Computing the Effect of An 
Additional Observation On A Previous Least-Squares Estimate 
NASA TN D-1599, January 1963. 

, 

2. Alston S .  Householder, "Principles of Numerical Analysis", 
McGraw-Hill Book Company, Inc., 1953. 

3. Alston S. Householder, "The Theory of Matrices in Numerical 
Analysis", Blaisdell Publishing Co. , 1964. 

.. 

9 


